equation constants are valid when other proteins are

- (a) Determine the maximum percentage recovery of protein 4 that can be obtained if it is desired to obtain a precipitate containing 100% protein 4.
- (b) Determine the maximum percentage recovery of protein 3 that can be obtained if it is desired to obtain a mother liquor containing 99% protein 3.
- Mixer Power to Achieve Complete Mixing It is desired to precipitate a protein in a solution with a density of 1.02 g/cm3 and kinematic viscosity of 0.012 cm²/s. The diffusion coefficient of the protein has been estimated to be 1.2×10^{-7} cm²/s. You need to select a mixer for this precipitation. To aid in this selection, plot as a straight line the dependence of the mixer power per solution volume (kW/liter) as a function of the time (s) to completely mix the solution for mixing times up to 100 s.
- Kinctics of Precipitation of a Protein The data 8.5 in Table P8.5 for particle number concentration Nwere obtained for the precipitation of a protein. Nucleation started at time zero.

You also know the following information:

Protein concentration = 3.0 g/liter

Power input = 1.5 kW (2.0 hp)

Liquid volume = 1000 liters

Liquid density = 1.05 g/cm^3

Liquid viscosity = $0.012 \text{ g cm}^{-1} \text{ s}^{-1}$

Molecular weight of protein = 200,000

Density of protein particles = 1.3 g/cm³

The flow is turbulent.

From this information, determine:

(a) The time and particle diameter at which particle growth started to be governed by particles colliding and sticking together,

TABLE P8.5

 t (min)	N (particles/cm³)	t (min)	N (particles/cm ³)
	3.72×10^{9}	3.5	4.51×10^8
0.5	1.86×10^9	4.0	2.29×10^{8}
1.0	1.24×10^9	4,5	8.49×10^{7}
2.0	9.28×10^{8}	5.0	3.14×10^{7}
2.5	7.42×10^{8}	5.5	1.16×10^{7}
3.0	6.19×10^{8}	6.0	4.31×10^{6}

- (b) The constant K_A in the equation by Smoluchowski describing particle growth by diffusion,
- (c) The collision effectiveness factor α for particle growth by fluid motion
- Protein Precipitation in a CSTR For a protein precipitation in a CSTR, determine the functional dependence of the mass-averaged particle size $\tilde{L}_{\rm m}$ (for particles above the critical aggregate diameter L_0) on the residence time au, parameter K_0 , and L_0 . Assume that particle breakage is negligible. For a value of K_0 of 0.02 min⁻¹ (determined for soy protein precipitating in a CSTR by A. M. Petenate and C. E. Glatz, "Isoelectric precipitation of soy protein. II. Kinetics of protein aggregate growth and breakage," Biotech. Bioeng., vol. 25, p. 3059, 1983) and $\bar{L_0}$ of 1.0 μ m, plot the dependence of \bar{L}_m on τ .
- Scaleup with Constant Power/Volume or Maximum Shear Rate A protein precipitation reactor with a mechanical agitator is being scaled up from volume V_1 to volume V_2 by two different methods: keeping power per unit volume (P/V) constant, or keeping the maximum shear rate (γ_{max}) constant.
 - (a) For the scaleup keeping P/V constant, determine the ratio of γ_{max} at volume V_2 to γ_{max} at volume V_1 as a function of V_1 and V_2 :

$$\frac{(\gamma_{\text{max}})_2}{(\gamma_{\text{max}})_1} = f(V_1, V_2)$$

(b) If constant γ_{max} is being used for scaleup, determine the ratio of P/V at volume V_2 to P/V at volume V_1 as a function of V_1 and V_2 :

$$\frac{(P/V)_2}{(P/V)_1} = g(V_1, V_2)$$

Design of a Tubular Reactor to Precipitate a 8.8 Protein A protein at a concentration of 2.0 g/liter is to be precipitated in a tubular reactor at 20°C and a rate of 1.0 kg/h. It is desired that the protein precipitate particles leaving the reactor have a diameter of 10 μm . The properties of the protein are as follows: molecular weight of 480,000, diffusion coefficient of 3.5×10^{-7} cm²/s at 20°C, and precipitate particle density of 1.29 g/cm3. Design a tubular reactor (i.e., specify diameter and length) to carry out the precipitation in turbulent flow at a Reynolds number of 10,000. It can be assumed that the particle collision effectiveness factor (α) is 0.05 for particle growth governed by fluid motion.